CARTA DESCRIPTIVA

I. Identificadores de la asignatura

Instituto: IIT Modalidad: Presencial

Departamento: Ingeniería Civil y Ambiental

Procesos y Operaciones Unitarias en Ingeniería

Materia: Ambiental

Programa: Maestría en Ingeniería Ambiental Carácter: Optativa

Clave: MAE-0112-00

Tipo: Curso

Créditos:

6

Nivel: Intermedio

Horas: 48 Totales Teoría: 0 Práctica: 0

II. Ubicación

Antecedentes: Clave

Introducción a la ingeniería

ambiental MAE-0050-00

Estadísticas con aplicación

a la ingeniería ambiental MAE-0024-00

Tecnología de muestreo y

Laboratorio ambiental MAE-0114-00

Consecuente:

Ninguno

III. Antecedentes

Conocimientos: Se asumirá que el alumno cuenta con los conocimientos básicos de Ingeniería y Química Ambiental, incluyendo los alcances y objetivos de sistemas de tratamiento típicos, tipos de contaminantes y caracterización físico-química de aguas.

Habilidades: Dominio de Idioma Inglés (Nivel TOEFL 500), Manejo de Herramientas Computacionales (procesador de palabras, hoja de cálculo). Trabajo en equipo. Capacidad de investigación independiente.

Actitudes y valores: Honestidad, Ética profesional, Disciplina, Concientización por el cuidado del

recurso hídrico.

IV. Propósitos Generales

El objetivo general del curso es el de introducir al estudiante de maestría a los principales procesos de tratamiento de aguas (potabilización) y aguas residuales. Existirá una cobertura amplia sobre este tema incluyendo las operaciones unitarias físico-químicas y microbiológicas de los tratamientos convencionales.

V. Compromisos formativos

Intelectual: Interdisciplinarios en aspectos de química, modelos de flujo, reactores y cinética de procesos químicos y biológicos.

Humano: Interés por la aplicación de medidas de protección al recurso hídrico a través de los sistemas de tratamiento de aguas. Estaba como Actitudes y valores.

Profesional: Después de completar el curso el estudiante habrá comprendido los conceptos fundamentales relacionados con las tecnologías de tratamiento de aguas y aguas residuales, siendo capaz de diseñar sistemas de tratamiento con base en la normatividad aplicable. Habilidades adquiridas incluyen:

- Cuantificación y caracterización fisicoquímica de efluentes de aguas residuales.
- Modelación y diseño de reactores para sistemas el tratamiento de aguas y aguas residuales

Se anticipa que parte de los conceptos adquiridos durante el curso sean incorporados a las investigaciones de tesis de maestría que los alumnos realicen.

VI. Condiciones de operación

Espacio: Aula tradicional

Mesa, sillas, pizarrón,

Laboratorio: No Mobiliario: equipo de proyección

Población: 1 - 20

Material de uso frecuente:

A) Cañón y computadora portátil

Condiciones especiales: El curso se limita a los sistemas de tratamiento por medios

biológicos y no incluye el transporte y/o disposición de aguas residuales.

El curso contempla la realización de un número de prácticas de laboratorio para adquirir parámetros de diseño.

Temas	Contenidos	Actividades
Presentación del Curso	Introducción y reglas del curso, Alcances del Modelaje Ambiental	 El curso se recomienda sea impartido mediante los principios del método de aprendizaje cooperativo de corte constructivista. El alumno deberá leer y entender el material asignado antes de venir a la clase, de forma que pueda cuestionar y/o argumentar sobre los conceptos de la materia a cubrir en la clase presencial.
2. Introducción a Procesos Unitarios físico-químicos	2. Repaso de Química y Biología General3. Repaso básico de Hidráulica y recursos Hidráulicos	
	4. Balance de Masas, Modelos de Flujos, Reactores pr 5. Procesos Misceláneos/Estimación de flujos de agua residual – Caracterización - Pr	 Otras actividades pedagógicas incluyen: Resolución matemática de problemas de procesos químicos y biológicos así como programación de ecuaciones y uso extensivo de hojas de cálculo. Prácticas de laboratorio para la estimación de velocidades de
3. Tratamiento de Aguas Residuales	 6. Sedimentación / Filtración 7. Procesos de Coagulación/Floculación 8. Remoción de Amonia / Transferencia de Oxígeno 9. Desinfección de Aguas 	sedimentación y cinética de reacciones. - Visitas de campo a plantas de potabilización y aguas residuales en El Paso, Texas y Ciudad Juárez, Chih. - Elaboración en equipo de un anteproyecto de diseño y/o análisis de para una comunidad que requiera de un sistema de
	Primer Examen Parcial	tratamiento de aguas.
	10. Caracterización y Calidad de Aguas Naturales (Indices de Calidad del Agua)	
4. Tratamiento y Manejo de Lodos	Segundo Examen Parcial	

11. Digestión Anaeróbica de Lodos12. Digestión Aeróbica de Lodos13. Manejo de Sólidos	
Tercer Examen Parcial	

VIII. Metodología y estrategias didácticas

Metodología Institucional:

- Elaboración de ensayos, monografías e investigaciones (según el nivel) consultando fuentes bibliográficas, hemerográficas y en Internet.
- Elaboración de reportes de lectura de artículos en lengua inglesa, actuales y relevantes.
- Participación en trabajo de campo y laboratorio para realizar entrenamiento practico.

Estrategias del Modelo UACJ Visión 2020 recomendadas para el curso:

Al principio de semestre se entrega a cada alumno el abstracto y programa de clases semestral, así como la asignación de lecturas y objetivos específicos a cubrir para cada una de los módulos. Entre las estrategias principales se encuentran:

- Análisis y comprensión del material bibliográfico asignado, así como la resolución numérica de problemas específicos a las unidades del programa.
- Visitas de campo a plantas tratadoras de aguas residuales del entorno local.
- Elaboración de un proyecto de investigación individual, en el que el alumno analizará de manera conceptual, algún sistema o técnica de tratamiento de aguas específico, no cubierto por el programa.

IX. Criterios de evaluación y acreditación

a) Institucionales de acreditación:

Asistencia mínima de 80% de las clases programadas

Presentar el 100% de los reportes escritos

Realizar presentaciones orales cuando le toque hacerlo

Calificación ordinaria mínima de 8.0

Permite examen único: No

b) Evaluación del curso

La evaluación del curso se determinara con base en los siguientes porcentajes:

Ensayos y reportes de lecturas: 10%

Exámenes parciales (3): 60%

Otros: Tareas de aplicación 30%

Total 100 %

X. Bibliografía

- *Unit Operations and Processes in Environmental Engineering*, Reynolds, T.D y Richards P.A., 2nd Edition. PWS Publishing Company, (1995).
- Water and Wastewater Technology, Fifth Edition, Mark J. Hammer & Mark J. Hammer Jr.; Editorial John Wiley & Sons, (2004)
- Wastewater Engineering, Treatment and Reuse, Fourth Edition; Metcalf & Eddy, Inc. (2003).
- Water Supply and Pollution Control, Fifth edition, Warren Viessman. Mark J. Hammer; Editorial Harper Collins.
- Tratamiento y Depuración de las Aguas Residuales, Metcalf Eddy; Editorial Labor (1981).

X. Perfil deseable del docente

- 1. PTC doctorado y con perfil PROMEP.
- 2. Preferentemente con experiencia práctica en diseño y/o administración de plantas tratadoras de aguas.

XI. Institucionalización

Responsable del Departamento: Mtro. Víctor Hernandez Jacobo

Coordinador/a del Programa: Mtro. Manuel Alberto Rodríguez Esparza

Fecha de elaboración: 11 de Mayo de 2010

Elaboró: Dr. Sergio Saúl Solís

Fecha de rediseño: No aplica

Rediseño: No aplica